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Working Experience: software engineer in private
enterprises and public research institutions in ltaly,
Switzerland, Germany

Academic Background: Atmospheric Physics and Remote
Sensing (Sapienza University of Rome)
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Qutline

e The Problem
o Land Use & Land Cover Classification
e The Physics
o  Reflectance spectra
e Copernicus
o  Sentinel-2 and the MSI Instrument
o Open Access Hub and Copernicus DIAS
e Deep Learning
o  Deep Learning architectures
The EuroSAT dataset
Data augmentation techniques
Fine-tuning
Model evaluation
One more validation test
e Conclusion
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Land Use / Land Cover Classification

Goals:
Resource planning and monitoring
Change detection

Example:

Corine Land Cover (44 classes, 3 levels)

Corine 2018 100m
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Reflectance spectra
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Copernicus Sentinel-2 and the MSI Instrument

Constellation of 2 satellites
in polar orbit at 786 km
altitude.

Revisit time: 5 days
Swath: 290 km

Multi-Spectral Imager with
13 bands from VIS to SWIR

Res.: 10m RGB (60m for
other bands)
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Copernicus Open Access Hub and DIAS

Copemicus Open Access Hub
’j Y W Inseitscarch criteria,

s

— @45% ﬁzm_
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Deep Learning Architectures

convl

conv2

conv3
/II/ conv4
EREREREE e fe6  fc7  fc8
) =——9¢ g & -
IIII I(l(.r. -" 1x1x4096 1x1x1000
28 x 28 x 512
56 x 56 x 256 7x7x512

NN
11/ 112 x 128

@ convolution+ReLLU
max pooling
7 fully connected+ReLU

l‘.
224 x 224 x 64
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Deep Learning Math

DL Math is not that difficult. What
matters is the implementation.

PyTorch uses automatic
differentiation to compute the
gradient of the cost function
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The EuroSAT dataset

10 Classes: Forest , Pasture, Herbaceous Vegetation, Annual Crop, industrial,
Residential, Permanent Crop, Highway, Sea Lake, River

Patches from Sentinel-2 imagery: 27000 64x64 RGB images, 2000-3000 per class
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Data Augmentation

AnnualCrop AnnualCrop

LT |

AnnualCrop

AnnualCrop AnnualCrop AnnualCrop

Affine transformations + Noise

AnnualCrop AnnualCrop AnnualCrop

Cldatiaperti




Fine-tuning the ImageNet datase

The model is trained over the
ImageNet dataset, a set 0of 1.200.000
images from 1000 classes.

The model is fine-tuned using the
much smaller EuroSAT images by
“freezing” all the model parameters
but the last layers.

Only 2 millions parameters to be
learnt for each epoch instead of more
than 25 millions.
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Model evaluation
Training set: 80%
Validation set: 20%
Misclassifications:
Annual Crop, Permanent Crop: 15

Industrial, Residential: 12
Sea Lake, Forest: 11

Herbaceous Vegetation, Permanent Crop: 9

Highway, River: 7
Herbaceous Vegetation, Forest: 6
Herbaceous Vegetation, Pasture: 6

AonualCrop

forest

HerbaceousVagetation

Hghway

naustrial

Actuzl

Residential

Sealake

Permanent Crop, Herbaceous Vegetation: 6

Pasture, Forest: 5
Pasture, Herbaceous Vegetation: 5
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Additional tests

July 2019 Aug. 2021
Prediction: Highway; Probability: 0.9980 Prediction: Industrial; Probability: 0.7301
[4.8410e-04, 1.3392e-06, 1.5634e-04, 9.9796e-01, [2.8591e-04, 3.4131e-06, 1.4427e-04, 2.6680e-01,
1.9808e-04, 7.3014e-01,
1.3962e-04, 8.8622e-04, 4.6300e-05, 11766e-04, 31067e-05, 1.4392e-04, 3.6543e-04, 2.0304e-03,
1.2730e-05] 5.0807e-05]
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Conclusion

Satellite imagery is a relevant resource for LULC classification tasks

A CNN ResNet with “only” 50 layers provides a good accuracy

A LULC map can be produced quickly in a cost-effective way

The result may be improved by using all the 13 MSI bands, Sentinel-1 SAR
images and a larger dataset for fine-tuning.

Blog post with link to the GitHub repository:

https://www.luigiselmi.eu/eo/lulc-classification-deeplearning.html
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CO m p a ny We b S ite . Data is not a scarce resource. In order for it to be useful and become information and knowledge we need to unearth the gems

buried under gigabytss of waste and connect ther in a mosaic, something that we can use and share. We have decided to
focus on data that matters. Nowadays many datasats are released by scientific institutions, governmental organizations and
communities under an open data license. Those datasets can helo to address the challenges vie have in front of us, improve our

h -t-t D S ://WWW. d ati a D e rti . i-tl work and products, and help us to plan our future the way we want.

Areas of Expertise &

We work on projects in the areas described in the following sections
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